Regularized Distance Metric Learning: Theory and Algorithm
نویسندگان
چکیده
In this paper, we examine the generalization error of regularized distance metric learning. We show that with appropriate constraints, the generalization error of regularized distance metric learning could be independent from the dimensionality, making it suitable for handling high dimensional data. In addition, we present an efficient online learning algorithm for regularized distance metric learning. Our empirical studies with data classification and face recognition show that the proposed algorithm is (i) effective for distance metric learning when compared to the state-of-the-art methods, and (ii) efficient and robust for high dimensional data.
منابع مشابه
یادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیکهای یادگیری معیار فاصله
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
متن کاملAn Effective Approach for Robust Metric Learning in the Presence of Label Noise
Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...
متن کاملManifold Regularized Transfer Distance Metric Learning
The performance of many computer vision and machine learning algorithms are heavily depend on the distance metric between samples. It is necessary to e xploit abundant of side information like pairwise constraints to learn a robust and reliable distance metric. While in real world application, large quantities of labeled data is unavailable due to the high labeling cost. Transfer distance metri...
متن کاملOutput Regularized Metric Learning with Side Information
Distance metric learning has been widely investigated in machine learning and information retrieval. In this paper, we study a particular content-based image retrieval application of learning distance metrics from historical relevance feedback log data, which leads to a novel scenario called collaborative image retrieval. The log data provide the side information expressed as relevance judgemen...
متن کاملA Robust and Efficient Doubly Regularized Metric Learning Approach
A proper distance metric is fundamental in many computer vision and pattern recognition applications such as classification, image retrieval, face recognition and so on. However, it is usually not clear what metric is appropriate for specific applications, therefore it becomes more reliable to learn a task oriented metric. Over the years, many metric learning approaches have been reported in li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009